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Abstract: With the aim of improving the Jupiter equilibrium liquid model consisting of two distorted spheroids 

(“spheroidals”) of our last paper, we generalize it here to any number l of layers, demanding that the calculated gravitational 

moments, J2n (n=1,.., 4), agree with those surveyed by the Juno mission, which is fulfilled with a much higher accuracy than 

for l=2. The layers are of constant density and concentric (but otherwise free from any specific constriction between their semi-

axes), each rotating with its own distribution of differential angular velocity, in accordance with our law in a past work. We 

point out that the angular velocity profiles are a consequence of the equilibrium itself, rather than being imposed ad initio. 

Although planetary structure aspects are not contemplated in our models, we arrange matters so that they can be compared 

with Gudkova’s and Guillot’s, paying attention on the distributions of mass and pressure. Our procedure is exact, in contrast 

with the self-consistent CMS (Concentric Maclaurin Spheroids) method developed by Hubbard, whose inexactitude resides in 

maintaining a single constant angular velocity while the spheroids are deformed. Our model predicts a differential rotation for 

Jupiter with periods for pole and equator of 9h38m and 10h14m corresponding to a mean period of 9h55m. 

Keywords: Gravitation, Hydrodynamics, Planets and Satellites, General, Stars, Rotation 

 

1. Introduction 

In a past paper [1], a Jupiter model consisting of two liquid 

concentric distorted spheroids (“spheroidals”), core and 

envelope, rotating differentially was proposed, demanding 

agreement between the calculated gravity moments J2n and 

those surveyed by the Juno mission, and that the model was 

in hydrostatic equilibrium. For the envelope, the mean 

rotation period found was 9.92 h, the average being taken 

over the values at the equator and the pole. The core resulted 

highly distorted, too small, and rotating very fast. The 

calculated J2n fell slightly off center of their uncertainty 

regimes. This model resulted to be stable. In an attempt to 

improve it, in the current paper the body is generalized to l 

layers. The minimization procedure used for the calculation 

of the J2n is achieved with a mean accuracy of ∼ 10
−10

, 

falling much nearer to the uncertainty centers than for l=2, 

where the accuracy was ∼ 10
−1

. Next, the corresponding 

equilibrium figures are established. 

The theory of stellar structure has evolved considerably. 

Although the interior of a star cannot be seen, there is little 

doubt of what is going on there. In the case of giant planets, 

the tendency is to imitate the stellar theory as much as 

possible. In recent times, there have been some important 

advances, but the uncertainty in the picture of the interior of 

planets still persists. Important problems occur principally, 

among others, in the not yet fully understood over-presence 

of heavy elements, the lack of exact knowledge of equations 

of state (EOS) for H/He or heavy elements at high pressures, 

as well as phase changes. 

The Juno mission allows the determination with good 

precision of Jupiter gravity, opening the opportunity to check 

the plausibility of the several interior structure models 

proposed thus far. Efforts to explain the observed gravity are 

made, for instance, by [2], on the abundance of heavy 

elements, or by [3], which compare various EOS. An 

alternative to EOS is related to a technique employing 

simulations known as Density Functional Molecular 
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Dynamics [4] which, at a quantum level, avoids the 

approximations and uncertainties of EOS. 

The Jupiter rotation state is also an open field. For 

example, [5] suggest the possibility that its atmosphere 

rotates differentially, but that internally rotates as a solid-

body. Some of the cited references, and others like [6-13] use 

the CMS (Concentric Maclaurin Spheroids) method, 

developed by [14, 15] to determine the J2n. This method is 

not exact because the expression used for equilibrium is not 

valid (see sections 4 and 7). The interior structure models are 

not affected by the imprecision if they are not forced to 

reproduce the J2n. However, if they are, as in the case of 

simulation procedures like those of [5], in which models are 

picked up from all the simulated ones that reproduce the 

observed J2n, as inferred with the CMS procedure, this 

structure models might actually not have the correct mass 

distributions for reproducing the observed J2n. 

Our method to establish the J2n is based on an exact 

equilibrium equation, described in detail in [16], and applied 

in [1]. This time, an application of the l-layer generalization 

based on existing internal structure models is made. For this 

purpose, we have chosen the models of [17] and [18], 

although more recent ones are available. Our main interest is 

to describe how to use the model, without intending to 

establish the suitableness of a particular one. Moreover, their 

models present quantitative results that are adequate for our 

method. One of our results concerns with a differential 

rotation for the envelope, with periods of pole and equator of 

Tp=9h38m and Te=10h14m. We point out that the angular 

velocity is a consequence of the theory, and hence it does not 

require of any constraint. Furthermore, the layers are 

deformed spheroids (‘spheroidals’), with adjustable size and 

deformation by the numerical procedure. 

2. The Basic Equations 

2.1. The Figures’ Shapez 

As in previous works [16, 19], the layers’ surfaces are 

analytically proposed from the beginning and given in the 

normalized form by the equations 

2 2 2 4

2 2 4
1,ni

i ni ni

x y z z
d

e e e

+ + + =  1, 2,...,i l=                (1) 

where ei is the ratio of thi  and first layer major axes, the
ni

e  

being proportional to rotation axes, according to the relation 

1 4 1

2

ni

Mni ni

ni

d
z e

d

+ −
=                           (2) 

Here 1/ 4nid > −  is the distortion parameter of layer i 

outer surface. If 0nid > , the surface is more flattened and 

bloated than the spheroid, contrary to the case 0nid < . The 

density of each layer will be taken as constant and 

represented by iρ  (between surfaces, i and i + 1). 

2.2. The Gravitational Moments 

The gravitational potential of a mass distribution of density 

( )rρ
 (cylindrical symmetry assumed) is established as a 

series of gravitational moments given by 

2 2

2 2
( ) (cos )n n

n n
J r r P d Ma

τ
ρ ϑ τ= −∫             (3) 

a is the body’s equatorial radius, τ the volume, P2n the 

Legendre polynomial of order 2n and ϑ the azimuthal angle 

measured from the pole to the equator. Let τi be the total 

volume limited by the thi  layer’s outer surface, and l the 

number of layers; notice that τ1=τ. Since ρ (r)=ρi for points r 

of thi  layer only, equation (3) can be written as 

2 2

2 2

1

( ) (cos )
i

l
n n

n n

i

J r r P d Ma
τ

ρ ϑ τ
∆

=

= −∑∫           (4) 

i
τ∆  is the volume of i-layer. In terms of the volumes τi 

equation (4) becomes 

2 2 2

2 1 2
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ρ ε τ

=

 
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Where 

1 1
( ) /

i i i
ε ρ ρ ρ−= −                               (6) 

and cylindrical coordinates (R, ϕ, z) have been used for 

convenience. The integrals in equation (5) are known 

analytically and given in the Appendix of [1] ([1], n ≤ 4). 

2.3. The Equilibrium State 

In papers [16, 1], the equilibrium equation for a rotating 

fluid was stated, specializing it for a two-layer model in [1]. 

The generalization to l layers is immediate. In the steady 

state, the generalization of Bernoulli equation is valid for 

each point of the medium: 

2
( ( ))p V f Rρ= − +                                  (7) 

p is the pressure, V the gravitational potential and f an 

arbitrary function that is determined by the boundary 

conditions in the layers’ interfaces: 

1
0 :p =  

2

1 1( )f R V= − , 
1i i

p p −=  

12 2( ) ( )
11 1

i i
f R V f Ri i i ik kk k

ε ε ε
− = − + ∑ ∑ −= = 

        (8) 

The total potential Vi (R, z) in each interface point is a 

function of R only since z can be expressed in terms of R by 

equation (1). Functions fi are related to the angular velocity Ω 

(=ω
2
/Gρ1) through ([16]). 

22 '( )i if RΩ =                                     (9) 

Hence, according to equation (8) Ωi for layer i is given by 
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Here, r is an abbreviation for R2. Finally, from equation 

(7) the pressure in each point of a layer is 

1

1

( )
l

i k i i

k

p V fρ ε
=

= − +∑                        (11) 

For numerical procedures, the gravitational potential is 

normalized to Gρ1a2. In the center, the pressure is 

1

1

( )
l

c k c l

k

p V fρ ε
=

= − +∑                        (12) 

3. The Numerical Procedure 

The numerical method employed in our approach was 

already described in [1], so it will succinctly be reproduced 

here for a rapid reference. The method is carried out in two 

steps: the construction of the mass distribution that 

reproduces the observed J2n, and the establishing of the 

angular velocity profile that sustains equilibrium. It must be 

emphasized that the last is not a restriction that needs to be 

imposed to the model; rather it obeys a law that we deduced 

and explained in detail in [16]. Hence, in our model the 

angular velocity is of a predictive character. 

For the first step, the inputs are the following facts for 

Jupiter 

7 7 27

6 6

2 4

6 6

6 8

7.1492 10 , 6.6854 10 , 1.89861 10

(14697.3 1) 10 , (586.623 0.363) 10 ,

(34.244 0.236) 10 , (2.502 0.311) 10

Ja m b m M Kg

J J

J J

− −

− −

= × = × = ×

= ± × = ± ×

= ± × = ± ×

    (13) 

where a, b, MJ are the equatorial and polar radii and the mass 

of Jupiter. Higher moments were not considered because the 

error bars increase considerably ([20, 21]), besides they are 

for the procedure irrelevant. With this input, the method 

produces as output a mass distribution having the observed 

parameters. It is characterized by the following variables: 

equatorial ei and polar zMi radii, distortion parameters dni and 

densities ρi, of all layers. This comes from an optimization 

procedure as is explained next. 

Since the theoretical moments that we call ���
� , are known 

analytically [1], it is demanded that variables ei, zMi, di, ρi on 

which ���
�  depend be such that 

4
2

2 2

1

( ) 0
t

i i

i

J J
=

− =∑                             (14) 

This problem is solved numerically by minimizing the sum 

in equation (14) from which the model parameters result. 

Knowing the model parameters, we come to the second 

step. The unknown here is the angular velocity that must 

satisfy a law depending on the gravitational potential 

(equations (8 to 10) coming from the equilibrium conditions), 

which can be determined for the already known mass 

distribution. For a specific application of the method, see 

sections 5 and 6. 

4. Bizyaev et al. Model 

Although this topic is not related specifically with Jupiter, 

it deals on rotating equilibrium figures of ideal fluids’ density 

stratifications worked out in an exact fashion [22], without 

generally supposing that the angular velocity is constant. In 

particular, they consider an application of their method for a 

stratification consisting of confocal spheroids (all shells have 

common focal points). The results are already known ([23], 

[24]) and are presented and applied here because their 

method is more general and can also be used for continuous 

stratifications. 

Constraining the l-layer model to be composed of confocal 

spheroids, the focal length c is fixed already by the Jupiter 

polar and equatorial radii: 

2
1 ,( z zMa Ma−  

2 2 2533078656.5 cm,  c 0.35431638, nc a b= = − = =  (15) 

where cn is the normalized focal length normalized Jupiter 

polar radius). It is important to remark that since all layers 

are limited by confocal surfaces, the gravitational potential at 

each surface point is a linear function of r (=R
2
=x

2
 + y

2
), and 

the angular velocity must be constant within each layer 

(equation (10), dV/dr=const). It is the exceptional case of a 

fluid in which the layers can rotate as solid bodies. For other 

instances, constant layer’s angular velocity is not possible or 

it must be differential. 

Given the stratification, and hence the potentials, Bizyaev 

et al. come to the rotating state that sustains equilibrium: 

2
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−− 21

i

z
Mni

 
 
 
 
      

−

 (16) 

meaning zMni the normalized polar radius, ∆i=ρi − ρi− eand 

∆0=ρ0=atmosphere density. Knowing the layer’s equatorial 

radii ei, by the confocality condition, the polar ones are fixed: 

2 2
z e cniMni = −  and with them all angular velocities (16) (in 

terms of the densities ρk). Certainly, not all layers’ 

geometrical configurations interest here, but only those 
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reproducing the ascertained gravitational moments in the 

Juno mission. Hence, the attempt is made to find a 

configuration that reproduces the observed gravitational 

moments with the procedure described in section 3. The 

result should be to get the correct layer’s radii ei (or zMni) and 

densities ρi, and with them the necessary angular velocities 

(16) that maintain equilibrium. Many efforts to find an 

expected stratification was made, without success. We 

believe that this is due to the condition that a confocal 

stratification must exist that is able to reproduce the observed 

moments. However, experimenting with J2n-values 

(especially J2) that differ too much from the observed ones, a 

configuration can be found. 

5. Gudkova Models 

For the Gudkova models [17], for example model MJ8, the 

relevant information here is presented in Table 1, which we 

call model M1. R is the normalized distance from Jupiter 

center, ρ and P are density and pressure at the layers’ 

interfaces. In this model, the density increases rather 

moderately in the first two layers (1.0-0.9 and 0.9-0.81), 

however, becomes considerably larger in the central layers, 

reaching the value 13.020 g cm
−3

 at the center that is about 

250 times the value in the atmosphere. Regarding the 

pressure, its behavior is similar to the density’s. The low 

initial growth comes to the two Mbar level at a depth of 

∆R=0.2 and reaches so high values as 50 Mbar at the center. 

Table 1. Gudkova’s model M1. 

R ρ (gcm−3) P (Mbar) 

1.00  0.00 

0.90 0.049 0.49 

0.81 0.092 2.00 

0.13 4.04 37.44 

0.10 8.93 41.80 

0.00 13.01 50.45 

We now construct a 5-layer spheroidal model taking the 

above radii as the equatorial ones since our model is not 

spherical. We demand, firstly that the mass distribution be 

such that the gravitational moments J2, J4, J6 and J8 agree 

with those provided by the Juno mission. Putting aside the 

restriction of a layer fixed radius, we find several models 

with the exact J2n, that is, the solution is not unique. 

Certainly, with the knowledge of only some gravitational 

moments, it is not possible, in general, to find a single mass 

distribution alone that reproduces J2,..., J8 and gives the 

potential (infinite series) solely. However, we do not accept 

any of these models, besides those that are in equilibrium 

under the action of gravity, pressure and rotation. In most 

cases, equilibrium is not satisfied because the centripetal 

force necessary for rotation cannot exist within a region. 

Although the error bars are more or less narrow, the observed 

J2n are not exactly known. For this reason, we select 

randomly the moments within the error bars and seek the best 

mass distribution that reproduces them. We find several 

models that are somewhat alike. Next, their equilibrium is 

tested, i. e., we attempt to find an angular velocity profile 

sustaining equilibrium. A typical equilibrium model is M2 

given in table 2. For this model one gets as gravity moments: 

6 614696.5 10 , 586.39 10 ,
2 4

6 634.07 10 , 2.46 10
6 8

J J

J J

− −= × = − ×

− −= × = − ×
 

e1 and zM are the normalized equator and polar radii, ωp and 

ωe the angular velocities at the pole and equator in rad/h, ρ 

the density in gcm
−3

, P the pressure in Mbar, and d is the 

distortion parameter that measure the deviation from the 

spheroid. As one sees, the model reproduces well the 

observed J2n. 

Table 2. Our model M2. 

e1 zM ρ P d �	 �
 

1.00 0.94  0.00 0.0019 0.65 0.61 
  0.209     

0.90 0.87  1.96 -0.0019 0.38 0.38 

  1.462     
0.81 0.74  5.23 -0.015 0.50 0.53 

  1.800     

0.13 0.068  17.41 1.43 0.55 0.54 
0.10 0.014 1.819 19.34 0.50 0.97 0.97 

0.00   17.33    

The model with parameters of M2 has low distortion (small d) 

in the three outer layers and, hence, they differ little from the 

spheroid (d=0); additionally, their flattening is low. The two 

innermost layers, on the contrary, are considerably more distorted 

and flattened. The density grows toward the center up to about ten 

times: from 0.209 to 2.030 g cm
−3

. The pressure has a remarkable 

behavior: from the atmosphere inwards, it increases rapidly 

reaching the two Mbar level in the bottom of the first layer and 5 

Mbar in the second one; it continues rising at a lower rate, reaches 

a maximum of 19 Mbar and then decreases to 17 Mbar at the 

center. The pressure here has no restriction, like in a barotropic 

relation or an equation of state, it only must satisfy expression (7). 

The angular velocity of a layer is influenced by that of the layer 

above it (equation (10)). As R decreases, the angular velocity 

increases, causing a greater increase near the center, resulting in a 

greater centripetal force, and hence in a reduction of the pressure 

gradient. The angular velocities are almost constant, not so the 

atmosphere (outermost layer) which clearly rotates differentially, 

with the pole running faster than the equator. The mean period of 

the atmosphere is 9.93 h, pretty near the accepted one [25]. 

Therefore, our model reproduces poorly Gudkova’s general 

parameters (or conversely). 

One source for the discrepancies probably resides in the 

layer concept. Our model’s layer is a bounded region of 

constant density delimited by non-spherical surfaces. For 

Gudkova’s (and some other researchers in the planetary 

structure field) a layer is a finite region also characterized by 

certain chemical and physical properties, such as 

composition, equation of state, entropy and so on. Their 

layers are commonly limited by spherical surfaces, and the 

density changes from a point to point. In order that our model 

comes closer to Gudkova’s, and from a gravitational 

viewpoint, the structure model will accordingly be 
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considered composed by three (or four) shells: an external 

shell, including the thin atmosphere, a middle layer and a 

central core. In the outer part the density increases almost 

linearly to the center; in the one or two shells core, the 

density is approximately constant. Gudkova’s models [17] 

have densities that increase nearly linearly with the 

(normalized) radius R , from the surface to the core ( 1.0≈R

for a one-layer core or 15.0≈R for a two-layer one); the 

core has practically constant layer density. Consequently, a 

spheroidal multilayer body is built here, say of 15 shells, 

divided into three regions: an outer part consisting of a 

constant density thin atmosphere; a twelve or thirteen layered 

region with a nearly linear density profile, and a one or two 

constant density layer core. 

A set of four gravitational moments ��
� , �


� , ��
� , ��

�  is 

randomly generated within the confidence intervals’ limits of 

the observed J2n. As explained in [1], a best mass distribution 

is looked for that reproduced the observed moments, that is, 

for which (see also section 3) 

4
2

2 2

1

( ) 0
r t

i i

i

J J
=

− =∑                                (17) 

where ���
�  is the theoretical moment calculated with the 

functions given in the Appendix of [1]. It depends of polar 

and equatorial radii, distortion parameter and relative density 

difference of neighboring layers. The procedure’s succeeding 

does not guarantee an equilibrium state for the particular 

matter distribution, i. e. to find a differential angular velocity 

distribution that sustains gravity and pressure. Regularly, the 

configurations with proper J2n are not equilibrium figures. To 

obtain an equilibrium model with good J2n, a huge number of 

gravitational moments’ sets is randomly generated and from 

each one, the correct mass distribution is obtained. From 

these procedures we found a 15-layer equilibrium model 

characterized by model M3 of Table 3 (for brevity, omitting 

10 intermediate layers). For this model one gets as gravity 

moments: 

6 6
14696.5 10 , 586.30 10 ,

2 4

6 6
34.10 10 , 2.19 10

6 8

J J

J J

− −= × = − ×

− −= × = − ×
 

In this model, the layers’ surfaces are not severely 

distorted, although the innermost deviates more from the 

spheroid’s shape than the peripheral one. The density attains 

higher values than in the model M2, beginning at 0.344 and 

ending at 5.781 g cm
−3

, with a similar behavior as the 

pressure that reaches about 30 Mbar in the center. Regarding 

rotation that supports equilibrium of the distorted model, the 

central part rotates about four times faster than the outer one; 

moreover, the angular velocity profile is markedly more 

differential in the first. The model’s mean rotation period is 

9.63 min that practically agrees with the observed one. 

Table 3. Our model M3. 

e1 zM ρ ρ P d �	 �
 

1.00 0.94  0.00 0.0019 0.65 0.61 

e1 zM ρ ρ P d �	 �
 

  0.344     

0.89 0.86  2.70 -0.009 0.54 0.50 
  1.311     

0.72 0.72  7.00 0.071 0.40 0.00 

  1.665     
0.14 0.11  17.41 0.729 2.05 1.71 

0.10 0.08 4.760 31.72 0.717 2.12 2.82 

0.00  5.781 27.533    

Certainly, models with higher inner densities were found; 

however, they did not correspond to Gudkova’s layers or 

were non-equilibrium models. Figures with a nearly linear 

density profile in the outer part and same size as Gudkova’s 

layers, seem to have a central density limit of about 6.000 g 

cm
−3

, a value close to a half of model M1. We presume that 

models with higher central densities cannot be found 

satisfying the particular conditions. 

In our model, density increases inward more rapidly first 

than in Gudkova’s, since, for instance, the layer e1=0.89 to 

0.72, with a midpoint ≈ 0.81, has density 1.311, whereas for 

R=0.81 Gudkova gets 0.920. Near the core, the relative 

difference between the two models decreases visibly. It is in 

the nucleus where Gudkova’s model density rises sensibly, 

deviating much more from ours. The not too severely 

different behavior of the two density profiles in the most of 

the models, could be attributed to a lack of distortion (and 

rotation) in Gudkova’s model. Though, the excessive density 

jump in the core that may be influenced by the remaining 

layers, is due perhaps to some weakening in the structure 

considerations; model MJ6 comes closer to model M3 in the 

sense that the central density is slightly lower and core mass 

is small, about 3 M⊕ (in our model is about 1.5 M⊕). Our 

rotating distorted model reproduces well the observed 

gravitational field, but does not take yet into account 

structure equations; in particular, temperature (that surely 

affects density and pressure, low in our model) is absent. 

6. Guillot Models 

Regarding Guillot models [18, 5], the relevant data are not 

given in the form of model M1, but as a relation between 

density ρ and pressure P that we write in Table 4: 

Table 4. Modelo M4 de Guillot. 

ρ (g cm 3− ) 0.344 1.31 3.16 4.10 5.00 

P (Mbar) 33.16 10−×  0.69 4.27 8.86 29.5 

These results are to be compared with M3, expressed as a 

relation ρ�-P, where ρ� is a mean density ((ρi−s+ρi)/2) taken in 

each interface of our model and P is the pressure at the pole 

of the interface. It leads to model M5 of Table 5. After a 

closer inspection, it is found that pressure considered as a 

function of density is always below for model M4 as for M5. 

From the surface to ρ ≈ 4gcm
−3

 it rises much more slowly 

than in M5, afterwards P increases sensibly in the last small 

interval, reaching the values of M5. In other words, there is a 

gap between the pressures of both models that widens first up 
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to ρ ≈ 4gcm
−3

 and afterwards diminishes more and more. If 

we use a mean polytrope P=Kρ
n
 to describe roughly the 

models, then (M4) has a higher mean index n=3.2 than M5, 

n=1.3, but constant K of the former is smaller than for the 

last. However, we must emphasize that M5 was built 

supposing a nearly linear density profile in the outer part of 

the model, and we have insufficient data to know if M4 fulfill 

this condition. Nonetheless, recent similar models [26] shows 

a linear tendency of ρ against R. 

Table 5. Our model M5, based on that of Table 3. 

�� P �	 �
 

0.83  2.00 0.65 0.61 

1.49 5.68 0.54 0.50 
1.84 15.78 0.40 0.00 

4.59 28.13 2.05 1.71 

5.66 28.70 2.12 2.82 
center 27.53 

Although the ρ-P gap between the two models is not 

narrow, the order of magnitude of the variables is similar, and 

practically the same near the surface and the core. 

Discrepancies in the rest of the models could be attributed to 

a lack of physical and chemical conditions in our model; or 

to a need of more refinement in the chemical restrictions and 

(differential) rotation and deformation in the model M4. 

Perhaps a more accurate model will be between M4 and M5. 

7. Discussion 

The models used here for a comparison date from 1999, 

although more recent ones are available [5]. They were 

chosen because they present numerical (graphical) results 

which are necessary for our model. From the papers, 

indistinctly if they are recent or not, one cannot get exact 

quantities, especially if they are given in graphical form. 

However, the principal interest here was to show the way to 

the application of our model, without the purpose yet to favor 

one particular internal structure model. Later, we will 

integrate into our model equations of internal structure. 

With the data extracted from the models of Gudkova and 

Guillot, we have seen that our model predicts too lower 

pressures and densities near the center of Jupiter than that 

Gudkova’s, but nearly of the same magnitude as that of 

Guillot’s. Conversely, in the remaining of the model, the 

coincidences are better with the first than with second. To get 

a global picture of this, let us represent the models roughly 

by average polytropes (logarithmic scale): 

6 1.44 6 3.25 6 1.26
2.03 10 , 0.13 10 , 4.08 10Ga Gt OuP P Pρ ρ ρ= × = × = ×  

it is seen that Gudkova’s and our model have practically the 

same mean tendency and pressures, PGa and POu, are slightly 

separated from one another; nonetheless, we know that there 

is a high discrepancy between the two in the central region. 

On the other hand, Guillot’s model pressure grows too much 

more rapidly with density than in the other cases, although it 

begins at a lot lower values; however, the order of magnitude 

of PGt is alike POu. Why is the increasing rate of PGt stronger 

than of PGa? Surely, it resides in the assumptions made in 

both models; but here cannot be decided what differences in 

the models induce, for example, a rapid pressure growth, or a 

very high central density or pressure. Last behavior is not 

probably due to a simple or multilayered core since Gudkova 

[17] gets similar ρ in both cases. On the other hand, with the 

data of the two models and that observed for  

Jupiter, our model predicts a Jupiter differential rotation of 

the atmosphere, that is given by the points 

(R/a, )= (0,0.653),(0.365,0.647),(0.447,0.645),(0.516,0.642),

(0.577,0.639),(0.632,0.637),(0.683,0.634),(0.730,0.631),

(0.775,0.629),(0.816,0.625),(0.856,0.623),(0.894,0.621),

(0.931,0.619),(0.966,0.616)

ω

,(1,0.614),

      (18) 

where ω is expressed in rad h
−s

. 

Our models lack presently of physical and chemical 

properties of the fluid; the only supposition being that the 

layers are of constant density ρi. Moreover, the stratification 

is deformed and rotates differentially to sustain equilibrium. 

For an arbitrary homogeneous fluid with cylindrical 

symmetry, the angular velocity in the surface is necessarily 

given by 

2

2

dV

dR
ω = −                                        (19) 

where V is the gravitational potential at a surface point at 

distance R from the rotation axis. In Maclaurin spheroid case, 

the slightest deformation [14] causes that the potential will 

differ from the simple quadratic form in (x, y, z) (see Section 

4) and the angular velocity will no longer be constant. 

Nonetheless, Hubbard does not allow to change ω. 

Certainly, for a multilayered object, ω in each interface 

point is expressed by an equation like (10). The model M2 or 

M3 based in Gudkova’s and Guillot’s models foresees a 

Jupiter surface rotating differentially with periods in pole and 

equator of Tp=9h38m and Te=10h14m, with a mean period 

Tm=9h55m. The method used here to predict the angular 

velocities in Jupiter surface is similar to that of [25, 27] in the 

sense that they use the Jupiter gravitational field only to 

deduce a rotation period T=9h55m; they assume from the 

beginning solid body rotation. They, like us, do not put any 

constraints on the internal structure, hence the method is not 

structure model specific. Here was demanded only that 

density changes approximately linearly with the equator 

radius (inspired by Gudkova’s and Guillot’s models). 

In the recent time, it is common to calculate the J2n moments 

with the CMS procedure developed by [15]. It is not an exact 

method because his basic expression does not correspond to the 

equilibrium state: U=V + Q=const., where 

2 2(1 (cos ) / 3
2

Q r Pω θ= − . According to [16], a rotating 

axial-symmetric fluid is in equilibrium generally if it rotates 

differentially, independently of its shape. For a rotating 

stratification, each layer rotates differentially with its own 

angular velocity. As a special case, when the layers are 

confocal spheroids, their angular velocities are constant 

(Section 4). On the other hand, differential rotation cannot be 
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common to all shells. For instance, let us suppose only two 

spheroid layers rotating with the same angular velocity. 

Equation (10) reduces to (Ω2=Ω1, Ω1 is the common angular 

velocity) 

22
1

dV

dr
Ω = −                                    (20) 

Indices 1 and 2 refer to external and internal surfaces. By 

means of equations (8) and (9), we conclude that 

2 1
dV dV

dr dr
=                                        (21) 

It is to be noticed that both sides of equation (21) are 

evaluated at the same distance R (R
2
=r) from the rotation 

axis, but at different z (z1 > z2): point 1 is farther than point 2 

from the center, hence the derivative at point 1 is smaller 

than at point 2, and the equality (21) is not valid. 

According to our procedure, whose theoretical basis is 

presented in [16], there is no freedom in the choice of ω: it is 

determined by the gravitational potential at each point of the 

fluid (equations (9), (10) and (20)), and in general it is of 

differential type. 
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