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Abstract: A detailed general relativistic formulation of the thin disk with the radial flow in Kerr — Newman geometry. The
effects of rotation through an angular momentum a and charge Q were obtained on pressure, velocity and density for co

rotating and counter rotating thin disk.
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1. Introduction

In the study of the charged rotating black hole, the
formation of thin disk is one of the most important aspects.
We have developed fully general relativistic approach for the
dynamics of the thin accretion disk having angular
momentum a and charge Q in the Kerr — Newman back
ground geometry. When the pressure force is negligible, the
disk become a thin, so that confined to the equatorial plane.
A solution for thin disk rotating around Kerr — Newman
black hole having non zero velocity in the radial direction is
obtained. The effect of rotating charge black hole clearly

ds? = — (1 - M) c2dt? —

pX pX

Using geometrized units with (G = 1 = ¢), and
A=12-2mr +a®+ Q%2

The parameter a stands for the angular momentum per unit
mass, as measured by a distant observer. The limiting case of
the KN metric is the Kerr metric (Kerr. R P, 1963) for Q = 0,
The Schwarzschild metric which is recovered fora = Q =
0, the Reissner-Nordstrom (RN) space time for a = 0, and
the Minkowski metric for special relativity fora = Q =m =
0. The KN spacetime is asymptotically flat and free of
curvature singularities outside the region situated very close
to the origin of coordinates (Puglies, Daniela, et al. 2013). In
particular, the function A vanishes at the radii

2a(2mr-Q?)

sin?0 dtd¢p + ——

=712+ a%cos?0 And A = (1% + a?)?

seen by comparing solution with their Kerr and

Schwarzschild counterpart.

2. Mathematical Formulation

The Kerr — Newman (KN) space-time is an exact solution
of the Einstein-Maxwell equations that describes the exterior
gravitational and electromagnetic field of a rotating charged
source with mass m, and angular momentum a and electric
charge Q. In Boyer —Lindquist coordinate, The KN line
element can be written as (Puglies, Daniela, et al. 2013).

Asin?0

d¢2+ dr? + % do? )]

— Aa?sin?0 )

ry =m=,m?—a?-Q? 3)

Become real only if the condition m2 > Q2 + a? is
satisfied. In this case r, and r_ represents the radii of the
outer and inner horizon, respectively and the KN solution is
interpreted as describing the exterior field of a rotating black
hole. In the case m? < Q2 + a?, no zero of A exits and the
gravitational field correspond to that of a ring singularities
situated at (Lynden- Bell. 2004).

72 + a?cos?6 = 0, Then for positive in the region
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r? +a’cos?’0+Q* —2mr <0 or r_ <r<r_ with which is known as the ergosphere where m? — Q2 —
ry. =m+\m? — Q2 — a’cos?6 a*cos®6 = 0 is satisfied.

In particular, for a black hole itisr, <r <7, _a region

A o, Gmr—Q?)
Zsm 0, Ity = 2asin“0 — 4

(2mr—q%) p)
gtt:_(]‘_ )'gT‘T:A_k'geG:Z' g¢¢:

)

m= %, ¢ Being the velocity of light.

3. Hydrodynamical Equation for Kerr Newman Background Geometry
The equation governing the motion of perfect fluid is described by law of conservation of the energy-momentum tensor
Tj =0 ®)

Where p is the pressure, pis the energy density including rest mass energy and u' is the four velocity satisfying the
normalization relationship u'u; = 1.
Momentum equation for

(P + Cp)u”, uw == (gii —u'u)p; (6)
Continuity equation

put +(p+ ) ul;=0 (7

The equation of momentum and continuity in terms of 3- velocity V¥ (Prasanna, AR, 1982).

(p-+ &) w2 [+ 2 (18 =) + 26vP (15 — 1) + V7P (1 =0 ) |+ (97— 8) 35 = (e -

RE)E ®)
(p+2) [V & + et = (18— 1R ) Ve =8 T 4 2 (0 = B) + Voo (0~ B) + iy (90 2+ g 32) +
CZ(uO)z [F,? K —2FJ“u'u’] =0 9)

Particularizing to the Kerr Newman metric having no electromagnetic for perfect fluid disk in Kerr- Newman background
geometry then equation of motion reduce into the form

(p+2) [d;’t (vr +VoIL W yve "‘; TN + c?r + 2every, — 2Vr (VT + VOrS,) +

vr
VT2V VO, + VO T + V' Ty — — [zvrverr vev"’%]

1 [V" 4 ap  Agdp V' a@mr-Q*) dp
(u0)?2 [cz AR Ot T or c AR 09 (10)
dve ave av® Ve
(p + E) el (Vrﬁ +VO— Ve %> + TG +2cV? — 2VO(VITE, + VOTY) + VTS + 2V VeTY, + VO°Tg,
+V9°rg —V—[zvrverr +2VOvers, |
$6 2 T 69
1 vl 4 9p 10p VOa@mr-Q?)ap

U St i (1D

(o+2) [dvd’ (Vr Fvo e "V¢ +ye ) +2¢(VTE + VTS, ) — 2V (VIS + VOrY) + 2VIVOTY, + 2vOve —

c2

ve 0 _ [op ra(emr-q?)-sin?6  v¢ A ) (2mr-q?)° v® a(2mr-Q?)) 4
= [2vrvert, +2v V¢r5¢]] = [— (————) - ~ a? +5 | (12

at ARz c AR Asin?0 AARZ c ARz
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Continuity equation (Chakraborty D K and Prasanna A R. 1981)

‘7Vr5_Vr0_Vr_rt_et r( 1o r ] o (rr ¢ G_VrVq)t_Vq’Vet
(p+2)[5-+55+ =V rtr VOTYy + V(I + T+ Ty ) + VO (T3, + T, + T8y ) Mty — = Th| +
2yl pyel e 1 (A _aemroYop
(at + V +V + v ) (p + ) + c(u%)2 (Akz cot AgZ a¢) =0 (13)
Adiabatic equation
9y yr2  yed L ye 2P _
(0t+v Br+V ae+v a¢)nv_0 (14)
Baryon conservation equation
avr avr avr vryé voye d a
R R R v + V(T + T + 1) + Ve (rs, +r9r+rag)——rt org| + (VI +
09 4 yo L 1 (A %p  a@mr-QYHop))_ 1 r 02 1 ye
v 20T v a¢) n+ n{c(uo)z (AkE ¢ + ARz a¢)} (at V +Vi% Tl v )p =0 (15)
The above equation gives the completehydrodynamical equation of Kerr Newman black hole.
Calculating all nonvanishing connection coefficient componentsI" as follows
. r*+a’ a’sinfcosf
T, = [m(r? — a*cos?0) = rQ*],Tjy = ————(r* + a® = b),
AX X2
. asin?6
T4, = s [{m(r? — a?cos?0) — rQ*}(r? + a?) — r2(r? + a? — A)],
. sm300059( N M = - (m(r? 26) _ rQ?),
00 = 52 r? +a? = AEZ m(r? — a®cos r
acotH 1
Fj; = (r?+a?2-A),T,; = =iy [{m(@r? — a%cos?0) — rQ?*}a%sin?6 — rZ(A — a?sin?6)],
® cotf - )
Tpo =— 52 ——[2(A — a?sin?0%20) + (r? + a®)(r? + a? — N)],
r 2 27 pr _ Aasin ‘6 2 2
I = 5H [m(r? — a%cos?0) —rQ?], t =Z—[m(r — a%cos?8) — rQ?],
Asin?0
The = —~i [r£? — a?sin?0(m(r? — a’cos?6) — rQ?)],
.1 a’sinfcosf Ar
= S lr@ =D +mel Iy = ————— T = -+,
0 a’sinfcosf 5 5 g asinBcos6 5
tf—z—z(r +a*—A),T; E—(r +a®)(@? +a? - 1),
2 2
Fg(p sm@cos@ [AZZ + (T‘ + az)(r +aq?— A)] Frar _a snzicos@ Frg — _‘l_,ge __a sm;cose' (16)

4. Dynamics of the Disk with Radial Flow in Locally Non-rotating Frame (L. N. R. F)

In LNRF Physical phenomena becomesmore transparent because it cancels out the effect of frame dragging of black hole

rotation as observeris chosen to rotate with the black hole. The observer whose world line arer =constant, & =constant and

¢ = wt + constantWhere w = —g— although these observer are rotating, the geometryisflat for the observer (Bardeen. J
o]
M, 1973).
Velocity V¢ in LNRF expressed as
o AP
Ve = —Ag)vb’ug) an

With this geometry, introducing a locally nonrotating frame (Kinnersley. W, 1969).
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(ATE)% 0 0 (Aiz)E 0 0 0
3 1
Al(a)’ 0 2 01 0 ’ éa): 0 (g)z 01 0 as)
—a(zmr‘%z)““e = 10 a(2mr—QOz) kD 251 0
(AZ)% 0 (g)z sinf | [~ (E)Z 0 0 G)Z cosect)

Now restricting to the case of slowly rotating Kerr new man black hole (Newman, E T. et al. 1965) (a « 1). In principle, the
form of Kerr Newman background for the equation of motion written in terms of V* The time components u° of the four
velocity which appear in the momentum equations expressed as

ﬁ = (1 — @) + 2asin?0 (zm;—_Qﬂg - Aik(VTr)z - (V_ce)z - gsinz (@)2 (19)
(ui)z - (1 - (2%_(22)) (1 - :_22) (20)
Where V2 = V®O* 1 y® 4 y@?
e (o ey 2
S @
(1= By s @)

Limiting for thin disk, V® = 0 thus the equations for radial flow reduces to stationary state with axis symmetric as follows

(p + Cﬂz) = [(1 — (2%_(22)) v® wv® 1(1 _ (2%_(22)) V(¢)2 — 6‘1_73”C<1 - V(r)2> (1 — (2%_(22))1/2 sinHV(¢)] =

ar r r c?

(-t 1)z o

(o+8) - [-22 (0 - ) vio?| - (1- )2 1 Ly @)

2 (logv @) +1(1- (2“‘;—“22))_1 (1 - Cm @)y 4 oo g (1 - (2%“22))1/2 V@ = (26)
(455 22w+ v« (D220

n [(1 _ (Zmr—Q2)>ii(r2V(r)) + %singv(r)v(‘p)] n (1 _ (Zer—QZ)> ymon, _n { 1 (1 _ (Zer—QZ)> v Z_ls} =0(28)

b r2 9r or (p+c£2) T2
and
LNES _Emr-@®)\ y 0 (P _
pa () + (1= ) VO () = 0 (29)
Where y = Z—p, The law of thermodynamics which includes the law of concentration of baryon numbers.
(nu');j =0 (30)

Where n is number density baryon numbers. In case of pressureless dust p = 0 and 6 = gthe fluid disk confine to the equatorial

plane the baryon conservation equation together with continuity equation can be written as (Bhaskaran, P and Prasanna, A R. 1990).
% _(,42)0n
ng— ('D+cz)6r0

(€3]

While the adiabatic equation of state is written as
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dp
ar

5. Thin Disk

Confining to the case of cold disk with p =0 and 8 =§

61

on

= (32)

for negligible pressure the adiabatic equation and baryon

conservation equation become identically zero and left with equation three only (Mishra, K N. and Chakraborty. D K, 1999).

Rewriting equations in dimensionless form,

1

(2mr-q2)\ av(® _ (3mr-Q*)\v®) | eamcsing (. (2mr-Q?) /2 @) —
(1 2 ) or + (1 2 ) r r3 (1 px ) v =0 (33)

1

- ) - AN
(1 _ (Zmr2 Q2)> a\;r _ (1 _ (3mr2 Q2)>‘; yr 4 Samsing 6amsm9 (V(T) 1)V(¢) (1 _ (Zmr2 Q2)> 2 0 (34)

and
1
_ (2mr-@?) 2v() 6amsm9 _ (2mr-@%) /2 () _ (2mr-Q3)\ ;) 0 _
p[(l p )rza‘r(rvr)-l_ (1 p ) Vv +(1 p )Vrar_o (35)
1/ .
(¢) _ B4 _ (2mr-Q?)\ /2 asinf (2mr-Q?)
v Tr (1 z ) (1 +B r z ) (36)
™2 _ 4 _ _ (2mr-@?) B2 (2mr-Q?) 2asind (2mr-Q?)
vet=1-|(1- ST ST (1 e 67
_ asind (2mr-Q2)

NP o

B, Constant At 0 = Z

2’

2
%2 + a%cos?8 become ¥ = r? and %

effective potential V =§ writing the expression in

dimensionless formas, Q = 2R =L, o =2, m =" and V. = an"; considered G = ¢ = 1.
e - 5{1 G} e ) @
= {1+ B (2 v)) @
VO = 1= [t (= Vi) {1+ 387 (= in?)} 1+ 5222 (2 i) &
At=".
V0" = 1= [f1= G- v o 28 G-Vt {1+ 22 (2 v @
o =g} e o)
p= it + 2 G va) “

In the above B and p, are two constants, for boundary
condition V® =0 atr =coandp =0atf = gplane.

6. Conclusion

The solutions p, V®? and V@) carry the signature of the
rotation of the charge black hole, the profile for V™, V(®
and p for & = —0.4.—0.2,0.40.2, and +0.4 the velocity V)
decreases (increases) when a is positive (negative ), The
density p increase (decrease) while velocity V(® decrease
(increase) for prograde (retrograde) motions as compared in

the Schwarzchild case. The motion of the disk increase
(decrease) for prograde (retrograde) depending on radial
distance R. In Kerr geometry the solution show the effect of
the rotation of the black hole through the term «, as changing
a to —a disks move from co rotating to counter rotating
(Mishra, K N. and Chakraborty, D K. 1999 ). In the special
case of Schwarzschild geometry.

v =2(; ) & (44)
wiomtEam) e
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pc_m?

P=ymz (46)

Squaring and adding (6.1) and (6.2) % (V(r)2 + V(¢)2) = %
obtained. In the Newtonian gravitational case the potential
energy per unit mass is — %and therefore the total energy

per unit mass become sum of kinetic energy and potential
energy i.e. total energy of the fluid to be zero at infinity. The
form of V™ and V@®* consistent with the law of
conservation of energy in their Newtonian limits.
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